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In the present paper, the authors study the thermal non-linear effects on the excitation
of sound generation which is applicable to the determination of the pressure in the direction
of the laser beam and at an angle with the laser beam. An additional pressure term appears
due to this non-linear effect. Considering the small amplitude waves, the impulse responses
of the system corresponding to both the pressure terms are determined. The pressure
corresponding to the main term is expressed as convolution between the impulse response
and the time derivative of the laser intensity and that corresponding to the additional term
is given as a convolution between the system’s impulse response and double time derivative
of the square of the energy released in time t. The effects of the thermal non-linearity on
the sound pressure are studied, considering the different time profiles of the laser pulse. It
is found that besides the thermal non-linearity, the pressure profile depends on laser
parameters and the shape. It is found that the pressure profiles are drastically different for
the small and long thermoacoustic arrays. The thermal non-linearity affects the pressure
waveform and the effect is pronounced for a short source. The results obtained are
compared with those of previous studies. A reasonable explanation of the experimental
observations of anomalous behaviour of underwater sound generation is also provided, on
the basis of thermal non-linearity.
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1. INTRODUCTION

The excitation of underwater acoustic waves from an airborne laser source has been
extensively studied theoretically as well as experimentally over two decades [1–3, and
references therein]. The main advantage of this type of sound generation is that there is
no need for having a real transducer in the water and the generated sound is usually very
directive. By regulating the laser parameters it is possible to implement remote control on
the frequency, directivity and intensity of sound waves in a liquid. The laser-induced sound
waves in different media have a wide range of applications in many areas of science, namely
optoacoustic concentrators [4], optoacoustic non-destructive testing [5], photoacoustic
spectroscopy [6, 7], thermoacoustic medical diagnostics [7] and thin-film ultrasonic
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measurements [8]. It has also been suggested that the optoacoustic concentrator can be
of great advantage to the destruction of internal formations of biological origin, e.g.,
kidney stones [4]. Laser-induced underwater sound waves have also been generated in sea
water [9]. Some oceanographic experiments have also been made to monitor wind waves
by optoacoustic sources [10]. Pierce and Hsieh [1] have proposed a sophisticated design
of an optical system for laser-induced heating of the ocean surface, indicating the
possibility of detecting thermoacoustic signals several kilometres away from the source.
Experimental observations show that the peak amplitude of the thermoacoustic signal can
be substantially increased by moving the laser beam at a velocity close to that of sound
in water [12]. Berthelot and Sayal et al. have suggested that the narrow frequency band
signals can be achieved with high repetition rate Gaussian [13] and half-sine [14] pulsed
lasers by proper choice of laser parameters. Recently, Zavtrak [15] has suggested an
acoustic laser with dispersed particles as an analog of a free-electron laser.

For moderate densities of released laser energy in the liquid, the thermal expansion
mechanism is the main process to generate the sound in the medium. Within the framework
of the linear model, very effective theories have been developed to explain the sound
generation in different conditions. Attention has also been paid to the non-linear effects
for the optical generation of acoustic waves in a liquid [16–18]. Vitshas et al. [16] studied
the non-linear dependence of the amplitude of the acoustic signal on the energy density
of the incident radiation and determined the energy threshold for the onset of evaporation
and flashing. Bozhkov et al. [17] reported on the experimental observations of the
non-linear evolution of large amplitude acoustic pulses in an aqueous solution of cupric
chloride. They observed the formation of weak shock waves and non-linear temporal
broadening of acoustic pulses. Davydov and Korchikov [18] investigated experimentally
and theoretically the non-linear effects associated with waveform of the acoustic pulse
generated in water with a suspension of solid material (carbon) during laser heating. It
was found that the onset of a non-linear mechanism significantly affects the waveform of
the acoustic pulse. Kolomenskii et al. [4] have theoretically and experimentally studied a
non-linear optoacoustic concentrator, i.e., the production of intense acoustic pulses in a
localized volume of a medium.

In the process of powerful laser beams impinging on water there is a considerable
increase in the temperature of the water. As a result the thermodynamical parameters of
the medium can no longer, in general, be considered as constant. Non-linear effects
associated with the temperature dependence of thermodynamic coefficients become
appreciable even for moderate released energy densities in the medium. A non-linear theory
of the thermal mechanism of sound generation has been developed by Dunina et al. [19].
They took into account the non-linear effects associated with variation of thermal
expansion coefficient during the absorption of a laser pulse. Using the farfield
approximations they applied their theory only in the direction of laser beams.

In experiments the receiver is usually located in the direction making some angle with
a laser beam incidence. In this paper, a theory of excitation of sound generation which
includes the thermal non-linear effects is presented. The theory is applicable to determining
the pressure in the direction of the laser beam and at an angle with the laser beam. In this
investigation, the authors study the thermodynamic effect due to the variation of thermal
expansion coefficient of water during the absorption of laser pulses for small amplitude
waves and therefore neglect the non-linear hydrodynamic effects.

The plan of the paper is as follows: in section 2, the problem is formulated and the
expression for pressure is obtained. The pressure expression contains an additional term
due to the variation of thermal expansion coefficient. Following Berthelot and
Busch-Vishniac [20] and considering the small amplitude acoustic waves, both the pressure
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terms are expressed in terms of impulse responses. In section 3, the expressions for impulse
responses corresponding to both the pressure terms are derived. Section 4 is devoted to a
discussion of the pressure wave forms for different time profiles of laser pulses. In section
5, the main conclusions are presented.

2. FORMULATION OF THE PROBLEM

The acoustic pressure pulses with amplitudes substantially smaller than rc2, where r is
the equilibrium value of density, c is acoustic velocity, can be well described by linear
acoustic theory, without considering the non-linear hydrodynamic effects. However, in
some situations the non-linear thermodynamic effects may be significant even for small
amplitude pressure pulses. The generation of small amplitude sound waves is considered
by laser radiation normally incident on the free surface of water. Neglecting the non-linear
hydrodynamic effects, the dynamics of water can be described by the continuity equation,
equation of momentum and equation of state as follows:

1r'
1t

+ r(9 . v')=0, (1)

r
1v'
1t

=−9p, (2)

p= c2r'+ rc2b(T)T', (3)

where p is the change in pressure, v' and r' are changes in fluid velocity and density, b

is the thermal expansion coefficient, the temperature T=T0 +T', where T0 is the initial
temperature and T' is its increment.

It is well known that the effect of temperature on density r and specific heat cp of water
is negligible in comparison with the thermal expansion coefficient. Therefore, r and cp are
treated as constant and b as a function of temperature. From equations (1)–(3), the
following inhomogeneous wave equation is obtained to describe the generation of acoustic
waves by laser radiation

92p−
1
c2

12p
1t2 =−r

12

1t2 (bT'). (4)

The general solution of equation (4) can be given in the following form

p=
r

4p gV

1
r

12

1t2 bT'(t') dV, (5)

where t'= t− r/c, r is the distance from the source to the observation point.
Using Taylor’s expansion, the thermal expansion coefficient b(T) is expanded as

b(T)= b0 + b1T', (6)

where

b0 = b(T0) and b1 = (db/dT)T=T0.

In the above equation the higher order terms are neglected in comparison with first order.
If the characteristic energy release time is sufficiently small in comparison with the
characteristic time of longitudinal heat diffusion, thermal conduction can be neglected and
it can be considered the temperature increment T' is given by the expression

T'= q1(t)/rcp , (7)
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where q1(t) is the energy density released at time t. For a uniform distribution of light
intensity in the cross-section of the laser beam, q1(t) is given by

q1(t)=
Aa

S
E(t) e−az, (8)

where a is the absorption coefficient of water, S is the transverse cross-sectional area of
the laser beam, E(t) is the energy released in the water up to time t, and A is the
transmission coefficient of light across the interface.

Using expressions (6–8) in equation (5), one obtains

p= p1 + p2, (9)

where

p1 =
Ab0a

4pcp gV

e−az

r
It (t') dS dz, (10)

p2 =
A2b1a

2

2prc2
p gV

e−2az

r
[I2(t')+ES (t')It (t')] dS dz, (11)

where ES (t)=E(t)/S is the surface energy density and I(t) is the intensity of the laser beam
at time t.

In the present investigation, only small amplitude waves are considered, i.e., p1, p2�rc2.
The pressure term p1 corresponds to the linear theory and the pressure term p2 corresponds
to non-linear effects associated with the variation of the thermal expansion coefficient
during absorption of the laser light. The first term is proportional to the time derivative
of the laser intensity and the second one is proportional to [I2(t)+ES (t)It (t)] or to the
double time derivative of the square of the energy released in time t.

The impulse responses h1(t) and h2(t) of the thermoacoustic system corresponding to
pressure terms p1 and p2 can be defined in the following manner:

p1(t)= h1(t) ( It (t), (12)

p2(t)= h2(t) ( [I2(t)+ES (t)It (t)]. (13)

Here, h1(t) and h2(t) contain all of the spatial characteristics of the system, and It (t) and
[I2(t)+ES (t)It (t)] contain all of the temporal information of the source corresponding to
p1 and p2. The asterisk (*) denotes convolution over time variable only. If the laser beam
is collimated in x and y and tapered in z, the spatial dependence of the system can be
decomposed into its vertical and horizontal components, provided that the receiver is
situated far away from the source [20]. Let ha (t) be the horizontal impulse response and
h'L1(t) and h'L2(t) be the vertical impulse responses corresponding to pressure terms p1 and
p2. Then, p1(t) and p2(t) can be written as

p1(t)= h'L1(t) ( ha (t) ( It (t), (14)

p2(t)= h'L2(t) ( ha (t) ( [I2(t)+ES (t)It (t)]. (15)

In the present analysis, it is assumed that the laser beam diameter is sufficiently small and
the finite beam width effects are considered to be negligible. Therefore, one can put
ha (t):Sd(t). In this situation, p1(t) and p2(t) can be put in the following form

p1(t)= hL1(t) ( It (t), (16)

p2(t)= hL2(t) ( [I2(t)+ES (t)It (t)], (17)
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where

hL1(t)=Sh'L1(t) and hL2(t)=Sh'L2(t).

In the next section, the expressions for the impulse responses hL1(t) and hL2(t) are derived.

3. IMPULSE RESPONSES hL1(t) AND hL2(t)

For a sufficiently small laser beam diameter, the pressures p1 and p2 in equations (10)
and (11) are given by

p1 =
Ab0aS
4pcp $g

a

0

e−az

r
It (t− r/c) dz−g

0

−a

eaz

r'
It (t− r/c) dz%, (18)

p2 =
A2b1a

2S
2prc2

p $g
a

0

e−2az

r
[I2(t− r/c)+ES (t− r/c)It (t− r/c)] dz

−g
0

−a

e2az

r'
[I2(t− r/c)+ES (t− r/c)It (t− r/c)] dz % . (19)

The second integrals in equations (18) and (19) are the contributions of the mirror images
above the pressure release boundary, corresponding to linear and non-linear terms,
respectively.

If xR , yR and zR denote the co-ordinates of the receiver, then

r2 = (xR − xc )2 + (yR − yc )2 + (zR − z)2, (20)

r'2 = (xR − xc )2 + (yR − yc )2 + (zR + z)2, (21)

where xc and yc are the centre co-ordinates of the beam. From equations (10) and (11) the
impulse responses, hL1 and hL2, corresponding to linear and non-linear pressure terms are
given by

hL1 =
Ab0aS
4pcp gz

e−az

r
d(t− r/c) dz—mirror image, (22)

hL2 =
A2b1a

2S
2prc2

p gz

e−2az

r
d(t− r/c) dz—mirror image. (23)

To obtain the impulse responses hL1(t) and hL2(t), a standard relation

df(z)= bdf(z)
dz b

−1

d(z− z0), (24)

is used, where z0 is chosen such that f(z0)=0.
The receiver is considered to be located at a point (r0, u0), where r0 is the distance

from the point where the laser beam impinges on the water surface (say O) to the receiver,
and u0 is the angle between the beam direction and the line joining the point of receiver
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and O. Using the relations (20), (21) and (24), in equations (22) and (23), the impulse
responses hL1(t) and hL2(t) are obtained in the simplified form as follows:

hL1(t)=
Ab0aSc

4pcp 6g
r0cos ub0

0

e−az

=z− r0 cos u0=
d(z−(r0 cos u0 −z(ct)2 − r2

0 sin2 u0)) dz

+g
2r0cosu0

r0cosu0

e−az

=z− r0 cos u0=
d(z−(r0 cos u0 +z(ct)2 − r2

0 sin2 u0)) dz

+g
a

2r0cosu0

e−az

=z− r0 cos u0=
d(z−(r0 cos u0 +z(ct)2 − r2

0 sin2 u0)) dz

−g
0

−a

eaz

=z− r0 cos u0=
d(z−(r0 cos u0 −z(ct)2 − r2

0 sin2 u0)) dz7, (25)

hL2(t)=
A2b1a

2Sc
2prc2

p 6g
r0cosu0

0

e−2az

=z− r0 cos u0=
d(z−(r0 cos u0 −z(ct)2 − r2

0 sin2 u0)) dz

+g
2r0cosu0

r0cosu0

e−2az

=z− r0 cos u0=
d(z−(r0 cos u0 +z(ct)2 − r2

0 sin2 u0)) dz

+g
a

2r0cosu0

e−2az

=z− r0 cos u0=
d(z−(r0 cos u0 +z(ct)2 − r2

0 sin2 u0)) dz

−g
0

−a

e2az

=z− r0 cos u0=
d(z−(r0 cos u0 −z(ct)2 − r2

0 sin2 u0)) dz7. (26)

The four integrals in equations (25) and (26) represent impulse responses from the four
source regions. The array response can also be represented by regions in time instead of
space. The impulse responses are divided into four time regions:

(1) tE r0 sin u0/c.

In this time region, the impulse responses reduce to

hL1(t)=0 and hL2(t)=0, (27)

which state that acoustic emission from the array has to travel a distance r0 sin u0 before
reaching the observation point. Therefore, the impulse responses corresponding to p1 and
p2 are zero for time tE r0 sin u0/c.

(2) r0 sin u0/cQ tQ r0/c.

During the time interval r0 sin u0/cQ tQ r0/c, the acoustic response corresponds to the
disturbances coming from regions 0 to r0 cos u0 and r0 cos u0 to 2r0 cos u0 of the
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thermoacoustic source, therefore the impulse response hL1 corresponding to p1 is given by
the first two integrals in equation (25).

hL1(t)=
2K e−ar0cosu0

z(ct)2 − r2
0 sin2 u0

cosh [az(ct)2 − r2
0 sin2 u0], (28)

where

K=Ab0aSc/4pcp .

Similarly, the impulse response hL2 corresponding to p2 is given by the first two integrals
in equation (26) as

hL2(t)=
2K1 e−2ar0cosu0

z(ct)2 − r2
0 sin2 u0

cosh [2az(ct)2 − r2
0 sin2 u0], (29)

where

K1 =A2b1a
2Sc/2prc2

p .

(3) t= r0/c.

The pressure release boundary condition implies that the acoustic contribution from the
point at z=0 is zero, and therefore the acoustic response at time t= r0/c is given by the
wavelet coming from the point z=2r0 cos u0. Therefore, the impulse response hL1

corresponding to p1 is given by the second integral in equation (25) as

hL1(t)=
K e−2ar0cosu0

r0 cos u0
. (30)

Similarly,

hL2(t)=
K1 e−4ar0cosu0

r0 cos u0
. (31)

(4) tq r0/c.

For time tq r0/c, the impulse response hL1 corresponding to p1 is given by the last two
integrals in equation (25).

hL1(t)= −
2K e−a z(ct)2 − r20sin

2u0

z(ct)2 − r2
0 sin2 u

sinh (ar0 cos u0). (32)

Similarly,

hL2(t)= −
2K1 e−2az(ct)2 − r20sin

2u0

z(ct)2 − r2
0 sin2 u0

sinh (2ar0 cos u0). (33)

Therefore, the impulse responses can be written as follows:

0 for tE t1,

2K e−Gm−1 cosh (am) for t1 Q tQ t0,
hL1(t)=g

G

G

F

f
K e−2G(r0 cos u0)−1 for t= t0,

(34)

−2K e−amm−1 sinh (G) for tq t0,
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0 for tE t1,

2K1 e−2Gm−1 cosh (2am) for t1 Q tQ t0,
hL2(t)=g

G

G

F

f
K1 e−4G(r0 cos u0)−1 for t= t0,

(35)

−2K1 e−2amm−1 sinh (2G) for tq t0,

where t0 = r0/c, t1 = r0 sin u0/c, G= ar0 cos u0, m= czt2 − t2
1 ,

K=
Ab0acS

4pcp
and K1 =

A2b1a
2cS

2prc2
p

.

The effect of thermal non-linearity can be characterized by the quantity

N1Ab1ESa

b0cpr
, (36)

which describes the ratio between the second and first terms in equation (9), using
equations (16), (17), (34) and (35). Therefore, the effect of thermal non-linearity can be
neglected only if N�1.

4. PRESSURE WAVEFORMS FOR DIFFERENT TIME PROFILES OF LASER PULSE

In this section, the effects of thermal non-linearity on the pressure waveforms for
different time profiles of laser are discussed. The three types of time profiles of laser pulse
are considered.

4.1.  :   

First, a parabolic time profile laser pulse is considered:

I(t)=
6E0t
St2

p 01−
t
tp1, (37)

where E0 and tp are, respectively, the laser pulse total energy and pulse width. The
coefficient of the profile is so chosen that at time t= tp , the energy E(t)=E0, the total
energy of the laser pulse. The pressure waveforms are obtained by using equations (16),
(17), (34) and (35) in equation (9). Corresponding to linear theory, only the term p1 is
considered.

In Figures 1 and 2, the pressure waveforms with time are plotted for T0 =10 and 5°C,
respectively. It is assumed that the observation point is fixed at a position (r0 =2 m,
u0 =30°). For the numerical analysis, the following values are used: the laser pulse width
tp =0·08 ms, laser pulse radius a=0·5 mm, laser energy density=2 MJ/m2, and the value
of a=17 Np/m, which corresponds to the effective length, L= a−1, of the source 5·88 cm.
Two positive peaks are obtained in the pressure waveforms. The dashed curves
corresponding to linear theory can be understood easily by impulse response of the system
and the time profile of the laser. For the parabolic laser pulse the derivative of the intensity
It decreases linearly from a maximum positive value to a minimum negative value,
becoming zero at t= tp /2, which is greater than (t0 − t1), the time duration of the positive
impulse response. The impulse response is zero for time tE t1, hence, zero pressure is
obtained for time tE t1. During t1 Q tQ t0, positive impulse response convolve with
positive It and positive pressure is obtained. For tq t0, impulse response is negative and
its magnitude decreases with time. Now, looking at impulse response and It , it is very easy
to see that for time greater than t0, first negative pressure is obtained (the dip at
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t1 t0 + tp /2) and after a certain time positive pressure is again established. The second
positive peak is obtained at t1 t0 + tp. For time above this, only the negative impulse
(which is decreasing in magnitude with time) convolve with It . The continuous curves in
Figures 1 and 2 correspond to the present theory. It can be seen that for a chosen length
of the thermoacoustic source and energy density of the laser, the effect of thermal
non-linearity is significant at temperature T0 =10°C (Figure 1), and is pronounced at
temperature T0 =5°C (Figure 2).

Different types of pressure waveform can be obtained by changing the laser pulse width
or by changing the effective length of the thermoacoustic source. In Figures 3 and 4, the
pressure waveforms are shown for very small and very large thermoacoustic sources,
respectively. From the dashed curve of Figure 3, it can be seen that the pressure waveform
of the small laser source corresponding to the linear theory is proportional to the second
time derivative of the laser pulse intensity, which is consistent with previous studies [1].
It can be explained by the impulse response approach: the impulse response of a very small
thermoacoustic source behaves as the time derivative of a delta function centred at t= t0.
Now it is clear that the pressure is proportional to

It (t) ( dt (t− t0)= Itt (t− t0). (38)

Figure 1. Pressure waveforms for parabolic laser pulse equation (37), for r0 =2 m, u0 =30°, laser beam radius
a=0·5 mm, a=17 Np/m, tp =0·08 ms and T0 =10°C for: linear model (-----); present theory (——).
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Figure 2. Pressure waveforms for parabolic laser pulse equation (37), for r0 =2 m, u0 =30°, laser beam radius
a=0·5 mm, a=17 Np/m, tp =0·08 ms and T0 =5°C for: linear model (-----); present theory (——).

Comparing Figures 1 and 3, it can be observed that the pressure signal generated by
the short source is received later in comparison to the longer source, even though the
receiver is situated at the same point for both cases. The physical reason is that for a very
long source, i.e., for a small a, the first signal travels the shortest distance, r0 sin u0, to reach
the receiver. However, for a small effective length of the source, i.e., for a large a, due to
the smallness of array, the first wavelet has to travel a great distance, and hence it reaches
the receiver at a later time.

Figure 3, shows that for a large a, i.e., for a very small length source, for a chosen energy
density of the laser pulse the thermal non-linear effects are very significant even at
temperature T0 =20°C. The physical reason for this is that for a very large a of the
medium, the laser source heats a small length column and hence a small volume of the
medium. Therefore, the temperature variation during the absorption of the laser source
is large which increases the thermal non-linear effect.

From the dashed curve of Figure 4, it can be observed that the pressure waveform of
the long thermoacoustic source is proportional to the inverted laser pulse intensity, which
is consistent with previous studies [1]. It can be seen that the thermal nonlinear effects are
not very significant at high temperatures. This is because of the small variation of the
temperature of the medium due to the long length column of the medium. However, the
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thermal non-linear effects cannot be neglected near 4°C even for a long length source. In
that situation, the variation of the thermal expansion coefficient with temperature cannot
be neglected in comparison to the thermal expansion coefficient of water at an initial
temperature.

From equation (36), it can be seen that the effect of thermal non-linearity is significant
for large energy density of the laser beam and also for large b1/b0. For water, the ratio
b1/b0 becomes very large for T0 1 4°C. Therefore, for water the effect of thermal
non-linearity is strongest for a temperature close to 4°C. The effect of thermal non-linearity
is increased for strong absorption of laser radiation in liquids, e.g., containing suitable dyes
or for CO2 laser in comparison to Nd-YAG laser.

For water, the thermal expansion coefficient changes sign at about 4°C. Above this
temperature water expands on heating and below it contracts. However, the experimental

Figure 3. Pressure waveforms for parabolic laser pulse equation (37), for r0 =2 m, u0 =30°, laser beam radius
a=0·5 mm, a=200 Np/m, tp =0·08 ms and T0 =20°C for: linear model (-----); present theory (——).
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Figure 4. Pressure waveforms for parabolic laser pulse equation (37), for r0 =20 m, u0 =30°, laser beam radius
a=0·5 mm, a=0·5 Np/m, tp =0·08 ms: T0 =10°C corresponding to linear model (––––) and according to
present theory (——); T0=5°C corresponding to linear model (· · · · · · ·) and according to present theory (-----).

observations show that the laser water interaction exhibits the so-called anomalous
behaviour [21]: the sound signal falls and vanishes and changes sign quite below 4°C, at
about 2°C. This anomalous behaviour of laser-induced sound generation near 4°C can
be explained on the basis of thermal non-linearity. At T0 1 4°C, b0 becomes zero and the
sound pressure corresponding to linear theory vanishes. However, considerable pressure
is still obtained because of thermal non-linearity. Below this temperature, the non-linear
parameter N (given by equation (36)) becomes negative. The pressure corresponding
to the linear term has an opposite sign to that corresponding to the non-linear term. The
total pressure should vanish and change sign at a critical temperature Tc when N1−1,
i.e.,

Ab1ESa

b0cpr
1−1. (39)

For example, for Nd-YAG laser with energy density 0·5 MJ/m2, the sound pressure would
change sign at about 2°C. It should be noted that the critical temperature Tc may fall below
this value, for example for large values of ES and a.
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4.2.  :   

In this subsection, the results of the pressure waveforms are presented for a modulated
laser pulse given by

I(t)=
25E0

2t2
pS

t e−5t/tp(1−cos (vt)), (40)

where v is the angular modulation frequency.
For the numerical analysis, laser energy density is chosen to be 2 MJ/m2. Other

parameters are as shown in Figures 5 and 6. For a chosen length of the source L=5·88 cm,
the pressure waveform appears as shown in Figure 5. It can be seen that the pressure
waveform has a periodic nature due to the modulation of the intensity of the laser pulse
and a roughly exponential decay in the amplitude corresponding to the exponential decay
in the laser intensity is obtained. By comparing Figures 5 and 6, the amplitude of the
pressure waveform can be seen to increase due to the thermal non-linearity.

Berthelot and Busch-Vishniac [12, 20] have found that for a stationary laser source, their
theory, which does not consider thermal non-linear effects, underestimates the observed
pressure. In reference [20], for a stationary laser source, the experimentally measured

Figure 5. Pressure waveform according to linear model for modulated laser pulse equation (40), for r0 =3 m,
u0 =25°, laser beam radius a=0·5 mm, a=17 Np/m, tp =1·2 ms, frequency f=30 kHz and T0 =10°C.
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Figure 6. Pressure waveform according to the present theory for modulated laser pulse equation (40), for
r0 =3 m, u0 =25°, laser beam radius a=0·5 mm, a=17 Np/m, tp =1·2 ms, frequency f=30 kHz and
T0 =10°C.

acoustic level was 116·7 dB re: 1 mPa, whereas the theory predicted peak level of 109·4 dB
re: 1 mPa. In reference [12], the predicted peak level was 123·1 dB re: 1 mPa, the average
difference between experimental levels and theoretical levels was about 4·6 dB, and in
general the theory of Berthelot and Busch-Vishniac underestimates the acoustic level
obtained experimentally. According to the present theory, the above discrepancies can be
substantially attributed to thermal non-linearity. However, the results concerned could not
be compared quantitatively due to non-availability of temperature data in references
[12, 20].

It may be noted that the effect of thermal non-linearity on the pressure waveform in
the case of a moving laser source is insignificant. Because of the motion, the laser cannot
deliver sufficient energy to a specific portion of the medium so that its temperature could
be increased considerably.

The thermal non-linearity has been found to also produce the second harmonics of the
modulation frequency. Near 4°C, the second harmonics are very significant. The physical
reason for the production of the second harmonics is the weak non-linear self-interaction
of the laser pulse fundamental harmonics.
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Figure 7 shows that the pressure waveform of the long thermoacoustic array for a
modulated laser source is proportional to an inverted laser pulse which is consistent with
previous studies [1, 20] and the discussion of section 4.1. It is also seen in the same figure
that the effect of thermal non-linearity becomes considerable in the neighbourhood of 4°C.

4.3.  :   

In this subsection, the pressure waveform for a Gaussian laser pulse is discussed; this
is given by

I(t)=X5
p

E0

Stp
e−5(t− tp )2/t2

p 0E tE 2tp . (41)

Figure 8 shows the pressure waveforms for a very short laser source; the length L of the
array has been chosen to be 2 cm. The dashed curve is drawn neglecting the thermal
non-linear effects while the continuous curve includes these effects. The pressure
corresponding to the linear theory (dashed curve) is proportional to the double time
derivative of the laser intensity, which is consistent with previous studies [1]. There are two

Figure 7. Pressure waveforms for modulated laser pulse equation (40), for r0 =10 m, u0 =25°, laser beam
radius a=0·5 mm, a=0·8 Np/m, tp =0·1 ms, frequency f=30 kHz; T0 =10°C corresponding to linear model
(– – – –) and according to present theory (——); T0=5°C corresponding to linear model (· · · · · · ·) and according
to present theory (-----).



5.0

–10.0

–15.0

–5.0

0.0

2.702.65 2.75 2.80

Time (ms)

P
re

ss
u

re
 (

P
a

)

. .   .496

Figure 8. Pressure waveforms for Gaussian laser pulse equation (41), for r0 =4 m, u0 =60°, laser beam radius
a=0·5 mm, a=50 Np/m, laser energy density=2 MJ/m2, laser time width 2tp =0·05 ms and T0 =20°C for:
linear model (-----); present theory (——).

positive symmetric peaks of the pressure and a negative pressure dip at t= t0 + tp . The
curve is symmetric about the t= t0 + tp axis, which can also be explained by equations
(38) and (41). Comparing both the curves in Figure 8, it is clear that for the chosen energy
density of the laser beam, the thermal non-linear effects significantly modify the pressure
pulse form even at temperature T0 =20°C. The negative pressure dip appears a little later.
The pressure waveform becomes asymmetric, the second positive pressure peak becomes
larger than the first positive pressure peak. The physical reason for this asymmetry is given
as follows: as time increases, the laser source delivers more energy to the medium;
consequently the temperature variation will be larger and thereby the thermal non-linear
effects will be stronger. For a long thermoacoustic source excited by a Gaussian laser pulse,
similar results are found as discussed earlier for parabolic and modulated laser pulses.

In the present study, the finite beam width effects have been neglected, which is fully
justified for a sufficiently small laser beam diameter as considered in the above numerical
analyses. For the finite sized laser beam one should also consider the effect of horizontal
impulse response that includes diffraction effects [20]. In the present investigation, the small
amplitude waves have been studied and the non-linear hydrodynamic effects neglected. For
the large amplitude waves one should consider the exact fluid equations instead of
equations (1)–(3). For large amplitude sound waves, the non-linear hydrodynamic effects
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may give rise to coherent non-linear structures like shock waves, solitons and vortices,
which may be of great use in communication. Using the asymptotic method, the problem
of small but finite amplitude non-linear sound waves will be addressed in the future.

5. CONCLUSIONS

In the present investigation, considering the thermal non-linear effects, the excitation of
underwater sound generation has been studied. The theory is applicable to determining
the pressure in the direction making an angle with a laser beam as well as in the laser beam
direction, while Dunina et al. [19] have applied their theory only in the laser beam
direction. Some interesting results for long and short laser pulses have been discussed and
a comparison made with previous studies.

The effect of thermal non-linearity depends mainly on the temperature of the medium,
surface energy density of the laser beam and length of thermoacoustic source. For water,
the thermal non-linearity plays a significant role near a temperature of 4°C.

Considering the different time profiles of the laser pulse, it has been shown that the
pressure waveforms are significantly different for long and small arrays. It is found that
the thermal non-linearity affects the pressure waveform and the effect is pronounced for
a short source.

For the modulated laser pulse, it is found that the thermal non-linearity also produces
second harmonics, which is quite significant near 4°C.

A reasonable explanation has been provided for the experimental observation of the
anomalous behaviour of laser water interaction around 4°C, on the basis of thermal
non-linearity.
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